Поиск
?


Скопировать ссылку на результаты поиска



Всего: 6    1–6

Добавить в вариант

Ос­но­вою піраміди SABCD є ромб ABCD, більша діаго­наль якого АС = 30. Грань SBC є рівно­бед­ре­ним три­кут­ни­ком (SB = SC) і пер­пен­ди­ку­ляр­на до пло­щи­ни ос­но­ви піраміди. Ребро SC на­хи­ле­но до пло­щи­ни ос­но­ви піраміди під кутом 30°. Визна­чте кут між пло­щи­на­ми (SAD) і (АВС), якщо ви­со­та піраміди дорівнює 5.


Тип Д17 C3 № 780
i

Ос­но­вою піраміди SABC є го­стро­кут­ний рівно­бед­ре­ний три­кут­ник ABC, AB = BC = 18. Грані SAC i SAB пер­пен­ди­ку­лярні до пло­щи­ни ос­но­ви піраміди, а ребро SB на­хи­ле­не до неї під кутом 30°. Визна­чте кут між пло­щи­на­ми (SBC) i (ABC), якщо площа ос­но­ви піраміди дорівнює 72.


Тип Д17 C3 № 916
i

Ос­но­вою піраміди SABCD є па­ра­ле­ло­грам ABCD з го­ст­рим кутом А. Ребро SB пер­пен­ди­ку­ляр­не до пря­мих AB і BC. Про­екцією ребра SD на пло­щи­ну ос­но­ви піраміди є відрізок до­в­жи­ною 10 см, який утво­рює зі сто­ро­ною AD кут: 30°. Визна­чте кут між пло­щи­на­ми (SAD) і (ABC). якщо SD = 15 см.


Тип 32 № 1290
i

Осьо­вим перерізом циліндра є пря­мо­кут­ник ABCD, сто­ро­на AD якого ле­жить у нижній основі циліндра. Діаго­наль AC перерізу дорівнює d й утво­рює з пло­щи­ною ниж­ньої ос­но­ви циліндра кут β. На колі ниж­ньої ос­но­ви вибра­но точку K так, що гра­дус­на міра дуги AK дорівнює 90°.

1. Зоб­разіть на ри­сун­ку за­да­ний циліндр і вкажіть кут у між пло­щи­ною (KBD) і пло­щи­ною ниж­ньої ос­но­ви циліндра. Обґрун­туй­те його по­ло­жен­ня.

2. Визна­чте кут γ.


Тип 32 № 1324
i

У пра­вильній чо­ти­ри­кутній піраміді SABCD плос­кий кут при вер­шині S піраміди дорівнює β. До­в­жи­на апо­фе­ми піраміди дорівнює 6.

1. Зоб­разіть на ри­сун­ку за­да­ну піраміду й укажіть лінійний кут γ дво­гран­но­го кута при її бічному ребрі. Обґрун­туй­те його по­ло­жен­ня.

2. Визна­чте кут γ.


Відповідно до умови за­в­дан­ня 31  (№  1357) у пра­вильній чо­ти­ри­кутній піраміді SABCD з ос­но­вою ABCD бічне ребро утво­рює з пло­щи­ною ос­но­ви кут β. До­в­жи­на бічного ребра дорівнює 12.

1. Зоб­разіть на ри­сун­ку пра­виль­ну чо­ти­ри­кут­ну піраміду SABCD та укажіть лінійний кута  β дво­гран­но­го кута при ребрі ос­но­ви цієї піраміди. Обґрун­туй­те його по­ло­жен­ня.

2. Визна­чте кута β.

1

У пра­вильній чо­ти­ри­кутній піраміді SABCD з ос­но­вою ABCD бічне ребро утво­рює з пло­щи­ною ос­но­ви кут α. До­в­жи­на бічного ребра дорівнює 12.

1. Зоб­разіть на ри­сун­ку пра­виль­ну чо­ти­ри­кут­ну піраміду SABCD та по­зна­чте кут α між бічним реб­ром та пло­щи­ною ос­но­ви піраміди.

2. Визна­чте до­в­жи­ну ви­со­ти піраміди.

3. Знайдіть об’єм піраміди SABCD.

Всего: 6    1–6