Поиск
?


Скопировать ссылку на результаты поиска



Всего: 12    1–12

Добавить в вариант

Тип 12 № 768
i

На ри­сун­ку зоб­ра­же­но графіки функцій y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка i y=g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Укажіть фор­му­лу для об­чис­лен­ня площі за­фар­бо­ва­ної фігури.

А)  S = ин­те­грал пре­де­лы: от 1 до 41, левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Б)  S = ин­те­грал пре­де­лы: от 1 до 4, левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
В)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Г)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Д)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx

Тип Д15 C1 № 847
i

За­да­но функцію f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус 6 x плюс 9.

1. Визна­чте ко­ор­ди­на­ти точок пе­ре­ти­ну графіка функції f з осями ко­ор­ди­нат.

2. По­бу­дуй­те графік функції f.

3. Запишіть за­галь­ний вигляд первісних для функції f.

4. Об­числіть площу фігури, об­ме­же­ної графіком функції f та осями x і y.


Тип Д15 C1 № 949
i

За­да­но функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе i g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =4|x|.

 

1. По­бу­дуй­те графік функції f.

2. По­бу­дуй­те графік функції g.

3. Визна­чте абс­ци­си точок пе­ре­ти­ну графіків функцій f i g.

4. Об­числіть площу фігури, об­ме­же­ної графіками функцій f i g.


Тип Д15 C1 № 983
i

За­да­но функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из x i g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =6 минус x.

1. По­бу­дуй­те графік функції f.

2. По­бу­дуй­те графік функції g.

3. Визна­чте абс­ци­су точки пе­ре­ти­ну графіків функцій f i g.

4. Об­числіть площу фігури, об­ме­же­ної графіками функцій f i g та віссю y.


Тип 12 № 1006
i

Об­числігь плошу за­фар­бо­ва­ної фігури, зоб­ра­же­ної на ри­сун­ку.

А)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
Б)  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби
В) 1
Г)  ко­рень из 2
Д)  ко­рень из 3

Тип 12 № 1038
i

На ри­сун­ку зоб­ра­же­но графіки функцій у = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і у = g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Укажіть фор­му­лу для об­чис­лен­ня площі за­фар­бо­ва­ної фігури.

А)  S = ин­те­грал пре­де­лы: от 1 до 4, левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Б)  S = ин­те­грал пре­де­лы: от 1 до 4, левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
В)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Г)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx
Д)  S = ин­те­грал пре­де­лы: от 2 до 7, левая круг­лая скоб­ка g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx

Тип 12 № 1072
i

На ри­сун­ку зоб­ра­же­но графіки функцій y= ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та та y= дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби . Укажіть фор­му­лу для об­чис­лен­ня площі за­фар­бо­ва­ної фігури.

А)  ин­те­грал пре­де­лы: от 0 до 2, левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка dx
Б)  ин­те­грал пре­де­лы: от 0 до 2, левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та пра­вая круг­лая скоб­ка dx
В)  ин­те­грал пре­де­лы: от 0 до 4, левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка dx
Г)  ин­те­грал пре­де­лы: от 0 до 4, левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та пра­вая круг­лая скоб­ка dx
Д)  ин­те­грал пре­де­лы: от 4 до 0, левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка dx

Тип 12 № 1108
i

На ри­сун­ку зоб­ра­же­но графік не­пар­ної функції y = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на проміжку [–5; 5]. Яке з на­ве­де­них співвідно­шень є спра­вед­ли­вим для f(x)?

А)  ин­те­грал пре­де­лы: от минус 3 до 0, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx мень­ше 0
Б)  ин­те­грал пре­де­лы: от 0 до 3, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx боль­ше 0
В)  ин­те­грал пре­де­лы: от минус 3 до 3, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx мень­ше 0
Г)  ин­те­грал пре­де­лы: от минус 3 до 3, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx боль­ше 0
Д)  ин­те­грал пре­де­лы: от минус 3 до 3, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx=0

Тип 12 № 1237
i

У пря­мо­кутній си­стемі ко­ор­ди­нат на пло­щині зоб­ра­же­но план пар­ко­вої зони, що має форму фігури, об­ме­же­ної графіками функцій y = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і у = 3 (див. ри­су­нок). Укажіть фор­му­лу для об­чис­лен­ня площі S цієї фігури.

А) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Б) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x
В) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 пра­вая круг­лая скоб­ка d x
Г) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Д) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x

Тип 30 № 1356
i

xy
0
0
9

За­да­но функцiю y = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 2.

1. Для на­ве­де­них у таб­лиці зна­чень х та у за­да­ної функції визна­чте відповідні їм зна­чен­ня у та х. Ре­зуль­та­ти запишіть у таб­ли­цю.

2. По­бу­дуй­те графік функції y = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 2.

3. По­зна­чте на ри­сун­ку точки пе­ре­ти­ну графіка функції з осями ко­ор­ди­нат та укажіть ко­ор­ди­на­ти цих точок.

4. Знайдіть одну з первісних F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка для функції f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 2.

5. Запишіть фор­му­лу для об­чис­лен­ня площі S фігури, об­ме­же­ної графіком функції f та осями ко­ор­ди­нат.

6. Об­числіть площу S цієї фігури.


Тип 12 № 1395
i

На ма­люн­ку зоб­ра­же­но графік деякої функції y  =  f(x) (два про­мені із за­галь­ною по­чат­ко­вою точ­кою). Ко­ри­сту­ю­чись ри­сун­ком, об­числіть F(8) − F(2), де F(x) — одна з пер­шо­ряд­них функцій f(x).

А) 6
Б) 7
В) 8
Г) 9
Д) 10

Тип 12 № 3189
i

На ма­люн­ку зоб­ра­же­но графік деякої функції y = f(x) (два про­мені із за­галь­ною по­чат­ко­вою точ­кою). Ко­ри­сту­ю­чись ри­сун­ком, об­числіть F(8) − F(2), де F(x)— одна з пер­шо­ряд­них функцій f(x).

А) 6
Б) 7
В) 8
Г) 9
Д) 10
Всего: 12    1–12