Поиск
?


Скопировать ссылку на результаты поиска



Всего: 12    1–12

Добавить в вариант

Тип Д4 A4 № 696
i

Укажіть об­ласть визна­чен­ня функції y= дробь: чис­ли­тель: 4 минус x, зна­ме­на­тель: 5 конец дроби .

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 5 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 4 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Г)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Д) (4; 5)

Тип Д15 C1 № 843
i

Знайдіть об­ласть визна­чен­ня функці y= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 56 минус 4x конец ар­гу­мен­та конец дроби . У відповіді запишіть найбільше ціле дво­циф­ро­ве число, що на­ле­жить об­ласті визна­чен­ня цієї функції.


Тип Д4 A4 № 926
i

Знайдiть об­ласть визна­чен­ня функцiї y= дробь: чис­ли­тель: x плюс 1, зна­ме­на­тель: x минус 2 конец дроби .

А)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
В)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Г)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 1;2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Д)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Тип Д4 A4 № 1029
i

Яку з на­ве­де­них вла­сти­во­стей мае функція y= ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та ?

А) на­бу­ває лише невід’ємних зна­чень
Б) спадає на всій об­ласті визна­чен­ня
В) парна
Г) періодич­на
Д) має дві точки екс­тре­му­му

Уста­новіть відповідність між функцією (1−4) та її вла­стивістю (А−Д).

Функція

1.   y=x в квад­ра­те

2.   y=x в кубе плюс 1

3.   y=3 минус x

4.   y= синус x

Вла­стивість

А    спадає на всій об­ласті визна­чен­ня

Б    зрос­тає на всій об­ласті визна­чен­ня

В    не­пар­на

Г    парна

Д    об­ластю зна­чень функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3

4

Тип 17 № 1511
i

Уста­новіть відповідність між функцією (1−3) і вла­стивістю (А−Д) її графіка

Функція

1.   y = x в кубе

2.   y = x в квад­ра­те минус 1

3.   y = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 2 конец ар­гу­мен­та

Вла­стивіст ь графіка функції

А    об­ласть зна­че­ния функ­ции  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка .

Б    имеет экс­тре­мум в точке x = 0

В    при­ни­ма­ет толь­ко от­ри­ца­тель­ные зна­че­ния

Г    не­чет­ная

Д    пе­ре­се­ка­ет гра­фик функ­ции y= левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те

А
Б
В
Г
Д

1

2

3

Тип 17 № 3031
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2x плюс 1

Вла­стивість функції

А функція не­пар­на

Б об­ластю зна­чень функції є мно­жи­на  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

В об­ластю визна­чен­ня функції є проміжок  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Тип 6 № 3061
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , яка визна­че­на на відрізку [−4; 3]. Укажіть об­ласть зна­чень цієї функції.

А) [−1; 2]
Б) [−4; 3]
В) [−1; 1]
Г) [−2; 3]
Д) [−4; −2]

Тип 17 № 3195
i

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 синус x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: |x| конец ар­гу­мен­та

Вла­стивість функції

А функція парна

Б об­ластю зна­чень функції є мно­жи­на [−1; 1].

В об­ластю визна­чен­ня функції є проміжок [−2; 2].

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Тип 17 № 3240
i

Увідповідніть функцію (1-3) та її вла­сти­вості (А-Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3x плюс 8

Свой­ство функ­ции

А графік функції про­хо­дить через точку з ко­ор­ди­на­та­ми (0;1)

Б функція спадає на всій об­ласті визна­чен­ня

В функ­ция яв­ля­ет­ся пе­ри­о­ди­че­ской

Г графіком функції є пряма

Д функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка

А
Б
В
Г
Д

1

2

3

Тип 17 № 3241
i

Увідповідніть функцію (1-3) та її вла­сти­вості (А-Д):

Функ­ция

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 минус 2x в квад­ра­те

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 2 x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в квад­ра­те минус 1

Свой­ство функ­ции

А функція спадає на об­ласті визна­чен­ня

Б графік функції являє собою па­ра­бо­лу, гілки якої спря­мо­вані вниз

В функція зрос­тає на об­ласті визна­чен­ня

Г графік функції являє собою па­ра­бо­лу, гілки якої спря­мо­вані вгору

Д графік функції про­хо­дить через по­ча­ток ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3

Тип 17 № 3243
i

Співвіднесіть функцію (1-3) і її вла­сти­вості (А−Д):

Функція

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2, зна­ме­на­тель: x конец дроби

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 3 в сте­пе­ни x плюс 1

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 x минус 1

Вла­стивість функції

А об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая круг­лая скоб­ка

Б графік функції розта­шо­ва­ний у всіх чо­ти­рьох чвер­тях ко­ор­ди­нат­ної пло­щи­ни

В графік функції має дві асимп­то­ти

Г об­ластю визна­чен­ня функції є проміжок  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції пе­ре­ти­нає вісь Oy в точке  левая круг­лая скоб­ка 0; 2 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
Всего: 12    1–12