Всего: 7 1–7
Добавить в вариант
У правильній чотирикутній піраміді SABCD з точки O, яка є основою висоти SO, до бічного ребра SA проведено перпендикуляр OM довжиною Двогранний кут при бічному ребрі піраміди дорівнює 120°.
1. Доведіть, що пряма SA перпендикулярна до площини BMD.
2. Знайдіть об'єм піраміди SABCD.
На рисунку зображено куб ABCDA1B1C1D1. До кожного початку речення (1—4) доберіть його закінчення (А—Д) так, щоб утворилося правильне твердження.
1. Пряма CB
2. Пряма CD1
3. Пряма AC
4. Пряма A1B
А паралельна площині AA1B1B
Б перпендикулярна до площини AA1B1B
В належить площині AA1B1B
Г має з площиною AA1B1B
Д утворює з площиною AA1B1B кут 45°
Осьовим перерізом циліндра є прямокутник ABCD, сторона AD якого лежить у нижній основі циліндра. Діагональ AC перерізу утворює з площиною верхньої основи циліндра кут β. Діаметр основи циліндра дорівнює d.
1. Зобразіть на рисунку заданий циліндр і його осьовий переріз ABCD.
2. Укажіть кут β, що утворює пряма AC з площиною верхньої основи циліндра.
3. Визначте об’єм циліндра.
Осьовим перерізом циліндра є прямокутник ABCD, сторона AD якого лежить у нижній основі циліндра. Діагональ АС перерізу утворює з площиною верхньої основи циліндра кут β. Діаметр основи циліндра дорівнює d. На колі нижньої основи вибрано точку K так, що відрізок AK видно з точки D під кутом 30°.
1. Зобразіть на рисунку заданий циліндр і вкажіть кут у між площиною (CKA) і площиною нижньої основи. Обґрунтуйте його положення.
2. Визначте кут γ.
Осьовим перерізом циліндра є прямокутник ABCD, сторона AD якого лежить в нижній основі циліндра. Діагональ AC перерізу дорівнює d й утворює з площиною нижньої основи циліндра кут β.
1. Зобразіть на рисунку заданий циліндр і його осьовий переріз ABCD.
2. Укажіть кут β, що утворює пряма АС із площиною нижньої основи циліндра.
3. Визначте об’єм циліндра.
Площа бічної поверхні конуса в
разів більше площі основи. Знайдіть кут між утворюючим конусом і площиною основи. Відповідь дайте у градусах.