Задания
Версия для печати и копирования в MS Word
Тип 32 № 3481
i

Відповідно до умови за­в­дан­ня 31 (№ 3480) сто­ро­на ос­но­ви пра­виль­ної три­кут­ної піраміди дорівнює 3. Бічні ребра на­хи­лені до ос­но­ви під кутом α.

1.  На­ма­люй­те на ма­люн­ку цю піраміду та вкажіть лінійний кут дво­гран­но­го кута при основі.

2.  Знайдіть цей кут.

Спрятать решение

Ре­ше­ние.

Сразу за­ме­тим, что это та же самая пи­ра­ми­да, что в преды­ду­щей за­да­че. По­стро­им ли­ней­ный угол дву­гран­но­го угла при ос­но­ва­нии. Про­ведём апо­фе­му SL бо­ко­вой грани SBC и ра­ди­ус впи­сан­ной в ос­но­ва­ние окруж­но­сти OL. Пря­мая ОL яв­ля­ет­ся про­ек­ци­ей на­клон­ной SL на плос­кость ос­но­ва­ния. По тео­ре­ме о трех пер­пен­ди­ку­ля­рах из вза­им­ной пер­пен­ди­ку­ляр­но­сти пря­мых OL и BC сле­ду­ет вза­им­ная пер­пен­ди­ку­ляр­ность пря­мых SL и BC. Сле­до­ва­тель­но, пря­мые SL и OL суть пер­пен­ди­ку­ля­ры к ребру дву­гран­но­го угла между плос­ко­стя­ми SBC и ABC, а по­то­му угол SLO — ли­ней­ный угол дву­гран­но­го угла при ос­но­ва­нии. Обо­зна­чим его β.

В рав­но­сто­рон­нем тре­уголь­ни­ке OL = дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби . Вы­ра­зим вы­со­ту SO пи­ра­ми­ды из пря­мо­уголь­но­го тре­уголь­ни­ка SOL, по­лу­чим:

SO=OL тан­генс бета = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби тан­генс бета .

Из преды­ду­щей за­да­чи имеем:

SO=OB тан­генс альфа = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс альфа .

При­рав­ни­вая по­лу­чен­ные вы­ра­же­ния, на­хо­дим, что:

 дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби тан­генс бета = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та тан­генс альфа рав­но­силь­но тан­генс бета =2 тан­генс альфа рав­но­силь­но бета = арк­тан­генс левая круг­лая скоб­ка 2 тан­генс альфа пра­вая круг­лая скоб­ка .

Ответ: 1) см. рис.; 2)  арк­тан­генс левая круг­лая скоб­ка 2 тан­генс альфа пра­вая круг­лая скоб­ка .

Классификатор алгебры: 1\.6\. Угол между плос­ко­стя­ми, 3\.2\. Пра­виль­ная тре­уголь­ная пи­ра­ми­да
Методы алгебры: Тео­ре­ма о трёх пер­пен­ди­ку­ля­рах
1
Тип 31 № 3480
i

Сто­ро­на ос­но­ви пра­виль­ної три­кут­ної піраміди дорівнює 3. Бічні ребра на­хи­лені до ос­но­ви під кутом α.

1.  Зоб­разіть на ма­люн­ку цю піраміду та кут α.

2.  Визна­чте ви­со­ту піраміди.

3.  Знайдіть об'єм піраміди.