Задания
Версия для печати и копирования в MS WordБіатлоніст п'ять разів стріляє по мішенях. Імовірність влучення в ціль при одному пострілі дорівнює 0,8. Знайдіть ймовірність того, що біатлоніст перші три рази потрапив у мішені, а останні два промахнувся. Результат округліть до сотих.
Решение.
Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна
Ответ: 0,02.
Классификатор алгебры: 12\.2\. Теоремы о вероятностях событий